

MONITORAGGIO DELLA MUTAGENICITÀ DEL PARTICOLATO ATMOSFERICO URBANO (PM_{2,5}) IN PIACENZA:

Report anno 2016

INTRODUZIONE

Il monitoraggio della mutagenicità del particolato atmosferico (Particulate Matter - PM) urbano, frazione $PM_{2,5}$ (particelle con diametro aerodinamico $\leq 2,5$ µm), è iniziato a Piacenza nel settembre 2000. Il sito di campionamento, da dicembre 2009, è Parco Montecucco, in zona denominata di fondo urbano parco e i mesi in cui si effettua il campionamento per i test di mutagenesi sono: Gennaio, Febbraio, Luglio, Novembre e Dicembre.

Per un problema tecnico non è stato sottoposto ai test il PM di dicembre 2013.

Per determinare l'attività mutagena del PM vengono utilizzati due test, entrambi ampiamente usati in campo ambientale, in grado di evidenziare differenti tipi di danno al DNA: il test su Salmonella che rileva mutazioni puntiformi, eseguito su tutti i campioni e il test della Cometa che a partire dal 2012 viene effettuato sulla linea cellulare umana A549, costituita da cellule di epitelio alveolare ottenute da carcinoma polmonare umano, anziché su leucociti da sangue periferico di donatori sani come avveniva in precedenza. Il test della Cometa evidenzia rotture a singolo o a doppio filamento del DNA e viene eseguito sui campioni prelevati nei mesi di gennaio, luglio e novembre.

In seguito alla decisione della Direzione Generale di Arpa di interrompere, da dicembre 2015, l'attività analitica del Laboratorio Tematico Mutagenesi Ambientale è stato stipulato un Accordo di Collaborazione e Ricerca con il laboratorio di Geno-Tossicologia Umana, Microbica e Vegetale del Dipartimento di Bioscienze dell'Università di Parma, ora Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, effettivo da gennaio 2016. Per questo motivo i test, a partire dal campione di novembre 2015, e il pretrattamento dei campioni a partire dal campione di gennaio 2016, vengono effettuati presso l'Università di Parma

Per un problema tecnico dovuto a difetto strumentale, verificatosi durante la fase di estrazione dei campioni di dicembre 2015 (effettuata presso il LT), per tutti i nodi della rete, si è deciso di invalidare i risultati dei test di questo mese, in quanto, molto probabilmente, sottostimati.

Si riportano di seguito i risultati aggiornati a dicembre 2016.

MATERIALI E METODI

Campionamento ed estrazione particolato atmosferico

Il particolato con diametro aerodinamico \leq 2,5 µm (PM_{2,5}) è raccolto su filtri in fibra di vetro tramite un campionatore sequenziale (*campionatore e misuratore di polveri in atmosfera SWAM 5A Monitor – FAI Instruments s.r.l.*). Il campionamento è continuo per tutte le 24 ore e il flusso di aspirazione è di circa 2,3 m³/ora. La concentrazione giornaliera delle polveri (µg/m³) viene determinata automaticamente dal campionatore. Il campionatore è collocato nella cabina della rete di monitoraggio della qualità dell'aria situata in Montecucco.

Il campione mensile, formato dall'insieme dei filtri giornalieri, viene estratto tramite apparato Soxhlet, in acetone (Acetone RS per pesticidi). Il solvente viene evaporato mediante rotavapor ed il residuo secco è risospeso in dimetilsolfossido (DMSO RPE-ACS) ad una concentrazione finale di 50 m³/ml per l'esecuzione del test su Salmonella e di 1000 m³/ml per il test della Cometa.

Le attività di campionamento e di invio dei filtri mensili, alla Sezione di Parma, vengono effettuate dal personale della Sezione di Piacenza.

Determinazione Idrocarburi Policiclici Aromatici (IPA) e Nitro-IPA

La determinazione degli IPA e dei Nitro-IPA viene effettuata presso la Sezione di Ravenna, nell'ambito delle attività del Polo Analitico Regionale Microinquinanti Organici, negli stessi estratti di particolato (PM_{2,5}) da sottoporre a test di mutagenesi.

L'aliquota degli estratti organici viene sottoposta a purificazione per cromatografia su colonna di adsorbimento impaccata con gel di silice disattivata al 3% con acqua, secondo le modalità riportate nel metodo EPA 3630C. L'eluizione di IPA e Nitro-IPA avviene in un'unica frazione con una miscela esano/diclorometano 50:50.

La determinazione analitica finale degli IPA viene effettuata per gascromatografia ad alta risoluzione interfacciata ad uno spettrometro di massa quadrupolare a bassa risoluzione

(HRGC/LRMS), attraverso la registrazione e la misura delle correnti ioniche relative ai picchi molecolari (Mi)⁺ e ai picchi isotopici (Mi+1)⁺.

IPA rilevati: naftalene, acenaftilene, acenaftene, fluorene, fenantrene, antracene, fluorantene, pirene, benzo (a) antracene, ciclopenta (cd) pirene, crisene, benzo (b) fluorantene, benzo (k) fluorantene, benzo (e) pirene, benzo (a) pirene, indeno (1,2,3-cd) pirene, dibenzo (a,h+a,c) antracene, benzo (ghi) perilene; dibenzo (a,l) pirene, dibenzo (a,e) fluorantene, dibenzo (a,e) pirene, dibenzo (a,i) pirene, dibenzo (a,h) pirene.

La determinazione analitica finale dei Nitro-IPA e dell'Ossi-IPA 3-nitrobenzantrone viene effettuata per gascromatografia ad alta risoluzione interfacciata ad uno spettrometro di massa a triplo quadrupolo HRGC/MS/MS, attraverso la registrazione e la misura delle correnti ioniche relative ai picchi degli ioni figlio ottenuti dalla reazione di collisione con Argon.

Nitro-IPA rilevati: 1-nitronaftalene, 2-nitronaftalene, 2-nitrofluorene, 2-nitro+3-nitro fluorantene, 9-nitroantracene, 9-nitrofenantrene, 1-nitropirene, 7-nitrobenzo (a) antracene, 6-nitrocrisene, 6-nitrobenzo (a) pirene, 3-nitrobenzantrone.

Da novembre 2010 sono stati inseriti anche l'1,6-dinitropirene e l'1,8-dinitropirene.

I dati relativi al 2-nitrofluorene, a partire da novembre 2010, non sono stati elaborati in quanto il composto risulta interferito (probabilmente da altri isomeri, non ancora identificati).

Test su Salmonella

Gli estratti di particolato atmosferico vengono sottoposti a test di reversione batterica sui ceppi TA98 e TA100 di *Salmonella typhimurium* (metodo di incorporazione in piastra) in accordo con i metodi standard (Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res 1983; 113: 173-215). Nel test si utilizzano ceppi di batteri recanti differenti mutazioni nel gene codificante per la biosintesi dell'istidina, che li rendono incapaci di crescere sul terreno di coltura, in piastra, in assenza di questo aminoacido. La positività del test viene valutata sul numero dei batteri che riacquistano la capacità di crescere in assenza di istidina, in seguito ad una seconda mutazione, dovuta all'esposizione a sostanze genotossiche (principio della retromutazione). I batteri che riacquistano tale capacità sono

detti revertenti. L'utilizzo di due ceppi di *Salmonella typhimurium* permette di evidenziare danni genetici di diverso tipo a livello di una o poche coppie di basi nel DNA (mutazioni puntiformi); in particolare il ceppo TA98 rileva mutazioni per inserzione o delezione di basi, mentre il ceppo TA100 rileva mutazioni per sostituzione di basi. Per distinguere le sostanze che per esercitare la loro azione mutagena devono essere metabolizzate (promutageni), come ad esempio gli Idrocarburi Policiclici Aromatici (IPA), da quelle che possono agire sul DNA direttamente (mutageni diretti), come ad esempio i derivati degli IPA, tutti i test su *S. typhimurium* vengono condotti con e senza attivazione metabolica esogena. A tal fine si utilizza la frazione microsomiale epatica (S9) di ratti nei quali è stata stimolata l'attività degli enzimi epatici. Per ogni campione si saggiano tre concentrazioni e per ogni concentrazione si eseguono tre repliche indipendenti. Per ogni test (TA98 con, TA98 senza, TA100 con, TA100 senza attivazione metabolica) vengono contati i revertenti dopo 48 ore di incubazione delle piastre in termostato a +37°C.

Test della Cometa

Il Test della Cometa, o Comet assay, evidenzia rotture del DNA a singolo e a doppio filamento, rilevando un danno primario nelle singole cellule non ancora riparato, né fissato. Come ricordato nell'introduzione, a partire da gennaio 2012, il test della Cometa viene effettuato sulla linea cellulare A549, costituita da cellule di epitelio alveolare ottenute da carcinoma polmonare umano, anziché su leucociti da sangue periferico di donatori come avveniva in precedenza. Pertanto, essendo modificato "l'organismo" utilizzato ma, soprattutto, i tempi di incubazione (24 ore anziché 1 ora), i risultati ottenuti con le A549 non sono confrontabili con quelli precedenti, ottenuti con i leucociti da donatori.

Il test viene eseguito in accordo con il metodo di Singh et al. (Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res. 1988; 175: 184-191): le cellule della linea cellulare A549 vengono messe a contatto con concentrazioni scalari di estratto di particolato atmosferico per 24 ore in termostato a +37°C e 5% di CO₂. Dopo l'incubazione le cellule vengono lisate e il

DNA viene sottoposto a corsa elettroforetica su vetrino in tampone fortemente alcalino (pH>13). I vetrini vengono, quindi, analizzati con microscopio a fluorescenza mediante marcatura del DNA con sostanza visibile agli UV (Bromuro di Etidio). In questa fase il DNA delle singole cellule appare come una cometa dotata di testa (in cui il DNA non è danneggiato) e di coda (formata dai frammenti di DNA rotti e migrati), la cui lunghezza e intensità luminosa sono proporzionali alla quantità di DNA migrato nella corsa elettroforetica e quindi al danno subito dalle cellule. Vengono saggiate 3 dosi in doppia replica. Si fa presente che la dose massima saggiata corrisponde a 10 m³ di aria.

Valutazione e rappresentazione dei dati

Test su Salmonella

Per stabilire la positività (mutagenicità) dei campioni di particolato si applica il criterio del raddoppio, cioè un campione si considera positivo quando il rapporto tra il numero dei revertenti indotti dal campione e il numero dei revertenti spontanei (controllo negativo) è ≥ 2 (Chu KL, Patel KM, Lin AH, Tarone RE, Linhart MS, Dunkel VC. Evaluating statistical analysis and reproducibility of mutagenicity assay. Mutat Res 1981; 85: 119-132).

Per l'analisi quantitativa si ricava il valore dei revertenti/m³ di aria e dei revertenti/µg di polveri dal coefficiente angolare della retta di regressione, ottenuta dal numero di revertenti riscontrati in ciascuna delle piastre per ogni dose (m³ di aria aspirata equivalenti o µg di particolato), considerando solo il tratto lineare della curva dose/risposta al fine di eliminare l'interferenza dovuta all'eventuale presenza di effetto tossico o di altri effetti inibenti. Si considera, a tal fine, solo il coefficiente angolare delle rette di regressione dose-effetto dei campioni positivi e di quelli che presentano un R²≥0,60.

Per rappresentare l'effetto mutageno totale dei campioni si utilizza il Fattore di Genotossicità che si ottiene sommando gli effetti dei quattro test effettuati su Salmonella, più precisamente si utilizzano i rapporti tra i valori dei trattati e dei loro rispettivi controlli (Rossi C, Poli P,

Buschini A, Campanini N, Vettori MV, Cassoni F. Persistence of genotoxicity in the area surrounding an inceneration plant. Toxicol Environ Chem 1992; 36: 75-87).

Test della cometa

Il danno al DNA viene misurato mediante sistema computerizzato di analisi dell'immagine (Comet assay IV). L'effetto genotossico del campione viene espresso come percentuale di intensità di fluorescenza del DNA nella coda della cometa (Tail Intensity - TI%), parametro raccomandato in letteratura, che calcola la quantità di DNA migrato, rispetto a quello rimasto integro nel nucleo. Per ogni dose vengono misurate duecento cellule (100 cellule in ciascuna replica).

Il potenziale effetto tossico degli estratti è valutato subito dopo il trattamento come riduzione della vitalità cellulare (mortalità), utilizzando il Trypan blue: una dose la cui mortalità cellulare supera il 30% viene definita "tossica" e non ne viene quantificata la genotossicità. Inoltre, durante la fase di lettura, viene valutata la percentuale di cellule "hedgehogs" (letteralmente porcospino) ovvero cellule fortemente danneggiate che presentano nuclei completamente dispersi, in cui la coda è separata dalla testa della cometa, fra queste possono essere presenti cellule che hanno attivato processi di "morte programmata" (apoptosi).

La positività di un campione viene definita mediante il test della mediana condotto con pacchetto statistico SPSS 14, mentre il valore quantitativo del danno è dato dal coefficiente angolare delle rette di regressione dose-effetto dei campioni positivi e di quelli che presentano un $R^2 \ge 0.60$, eliminando le dosi che presentano effetto tossico.

RISULTATI

Test su Salmonella

Nel 2016, si riscontrano valori di mutagenicità del particolato atmosferico, espressa come Fattore di Genotossicità totale (Tab.1), "fortemente positivi" in tutti i mesi più freddi e a differenza degli anni precedenti riportati in tabella, una debole positività nel mese di luglio. La riduzione della mutagenicità di tutti i campioni di luglio rispecchia il tipico andamento stagionale della mutagenicità del PM rilevata con questo tipo di test. Rispetto all'anno precedente, in cui gli FG dei mesi più freddi erano omogenei fra loro (intorno al 50), spicca il valore di FG del mese di gennaio, seguito in minor misura da quello di novembre, mentre nel mese di febbraio 2016 si riscontra un valore di FG più basso rispetto a quello dello stesso mese degli anni precedenti.

Il valore di FG più alto nel periodo riportato resta quello riscontrato in gennaio 2013.

Tabella 1 - Genotossicità del particolato atmosferico urbano PM_{2,5} rilevata come Fattore di Genotossicità (FG) su tutti i test in Salmonella typhimurium.

	FG		FG		FG		FG
gen-09	nd	gen-11	57,9	gen-13	121,2	gen-15	50,5
feb-09	nd	feb-11	45,5	feb-13	50,8	feb-15	51,1
lug-09	nd	lug-11	0,4	lug-13	0,5	lug-15	0,2
nov-09	nd	nov-11	64,7	nov-13	46,7	nov-15	50,3
dic-09	49,0	dic-11	103,5	dic-13	nd	dic-15	inv
gen-10	44,0	gen-12	83,2	gen-14	61,3	gen-16	112,24
feb-10	59,5	feb-12	108,9	feb-14	46,1	feb-16	17,5
lug-10	0,6	lug-12	0,9	lug-14	0,8	lug-16	2,3
nov-10	18,3	nov-12	28,0	nov-14	33,0	nov-16	68,8
dic-10	58,8	dic-12	57,8	dic-14	23,9	dic-16	48,0

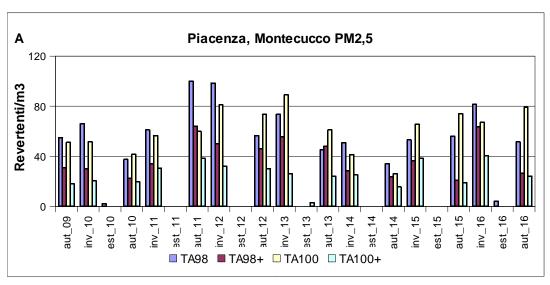
nd = non determinato; inv = invalidato

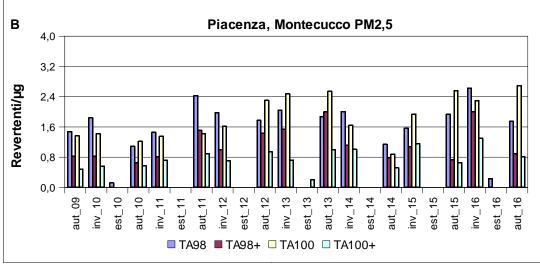
Intervalli di positività del Fattore di Genotossicità calcolato in base a tutti i test eseguiti sui ceppi TA98 e TA100 di Salmonella typhimurium con e senza attivazione metabolica esogena.

Range FG	Giudizio			
FG ≤ 1,4	negativo			
$1,5 \le FG \le 2,9$	debolmente positivo			
$3,0 \le FG \le 14,9$	positivo			
FG ≥ 15	fortemente positivo			

Per quanto riguarda l'aspetto "qualitativo" della mutagenicità (es.: induzione di mutazioni per sostituzione piuttosto che per inserzione o delezione di basi, presenza di mutageni diretti o di promutageni), nel 2016, come per l'intera serie storica, vi è una maggiore sensibilità nei test condotti in assenza di attivazione metabolica (t di Student, p<0,05, revertenti/m³ di aria e revertenti /μg di polvere) evidenziando una prevalenza di sostanze ad azione mutagena diretta (Fig.1A,B; Tab.2) cioè che possono agire sul DNA direttamente senza essere metabolizzate.

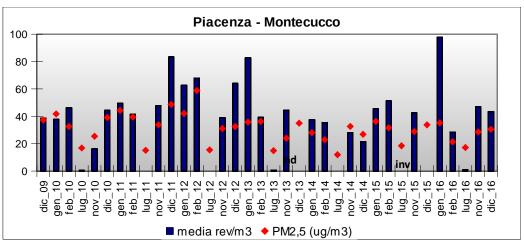
In generale, nel 2016 i livelli di mutagenicità non sono statisticamente diversi da quelli riscontrati nel 2015 (Fig.1A,B; Tab.2). Rispetto agli anni precedenti l'unica differenza statisticamente significativa che si riscontra è nel numero dei revertenti indotti nel ceppo TA100 in assenza di attivazione metabolica esogena, per microgrammo di particolato, in cui l'autunno 2016 è maggiore dell'autunno 2014.


Tabella 2 - Valori dei revertenti per metro cubo di aria e dei revertenti per microgrammo di polveri (PM_{2,5}) calcolati dalla retta di regressione dose/effetto, in tutti i test eseguiti sui ceppi TA98 e TA100 di *Salmonella typhimurium* con (+) e senza attivazione metabolica esogena, nei periodi indicati.


PM2,5	revertenti/m³			PM2,5		revertenti/µg			
	TA98	TA98+	TA100	TA100+		TA98	TA98+	TA100	TA100+
dic-09	55	31	51	18	dic-09	1,474	0,831	1,367	0,482
gen-10	56	29	47	19	gen-10	1,341	0,695	1,126	0,455
feb-10	76	31	56	22	feb-10	2,335	0,952	1,720	0,676
lug-10	2	0	0	0	lug-10	0,118	0,000	0,000	0,000
nov-10	19	12	23	11	nov-10	0,747	0,472	0,904	0,432
dic-10	56	33	60	28	dic-10	1,431	0,843	1,533	0,715
gen-11	65	36	61	36	gen-11	1,465	0,81	1,375	0,812
feb-11	57	32	52	25	feb-11	1,446	0,812	1,32	0,634
lug-11	0	0	0	0	lug-11	0,000	0,000	0,000	0,000
nov-11	83	43	42	24	nov-11	2,441	1,267	1,240	0,710
dic-11	118	85	78	52	dic-11	2,418	1,757	1,600	1,079
gen-12	89	43	72	47	gen-12	2,117	1,023	1,712	1,118
feb-12	108	57	90	17	feb-12	1,835	0,969	1,529	0,289
lug-12	0	0	0	0	lug-12	0,000	0,000	0,000	0,000
nov-12	48	23	58	27	nov-12	1,546	0,741	1,868	0,870
dic-12	65	69	89	33	dic-12	1,997	2,120	2,734	1,014
gen-13	96	86	110	39	gen-13	2,680	2,401	3,071	1,089
feb-13	51	25	68	13	feb-13	1,406	0,689	1,875	0,358
lug-13	0	0	0	3	lug-13	0,000	0,000	0,000	0,201
nov-13	45	48	61	24	nov-13	1,874	1,999	2,541	1,000
dic-13	nd	nd	nd	nd	dic-13	nd	nd	nd	nd
gen-14	53	33	41	23	gen-14	1,890	1,177	1,462	0,820
feb-14	49	24	42	27	feb-14	2,125	1,047	1,824	1,196
lug-14	0	0	0	0	lug-14	0,000	0,000	0,000	0,000
nov-14	39	26	28	19	nov-14	1,196	0,797	0,859	0,583
dic-14	29	21	24	12	dic-14	1,081	0,782	0,894	0,447
gen-15	54	35	64	29	gen-15	1,488	0,965	1,764	0,799
feb-15	52	38	67	48	feb-15	1,643	1,200	2,116	1,516
lug-15	0	0	0	0	lug-15	0,000	0,000	0,000	0,000
nov-15	56	21	74	19	nov-15	1,937	0,726	2,559	0,657
dic-15	inv	inv	inv	inv	dic-15	inv	inv	inv	inv
gen-16	129	106	91	65	gen-16	3,664	3,010	2,584	1,846
feb-16	34	21	43	16	feb-16	1,588	0,981	2,008	0,747
lug-16	4	0	0	0	lug-16	0,233	0,000	0,000	0,000
nov-16	51	24	92	21	nov-16	1,785	0,840	3,219	0,735
dic-16	52	29	66	27	dic-16	1,704	0,951	2,163	0,885

nd = non determinato; inv = invalidato

Figura 1 - Genotossicità del PM_{2,5} espressa come numero medio dei revertenti per metro cubo di aria e (A) e microgrammo di polveri (B), rilevata nelle stagioni indicate, in Salmonella typhimurium ceppi TA98 e TA100 con (+) e senza attivazione metabolica esogena. Inverno: media gennaio-febbraio; estate: luglio; autunno: media novembredicembre.


nb:autunno 2009 solo dicembre; autunno 2013 e autunno 2015: solo novembre

Osservando l'andamento dei revertenti indotti per microgrammo di particolato e cioè l'attività mutagena specifica del PM (Fig.1B; Tab.2) si conferma che in alcuni mesi, la maggiore attività mutagena specifica del PM incide di più della concentrazione dello stesso (microgrammo per metro cubo di aria) (Fig.2) sul numero di revertenti per metro cubo di aria

(vedi ad esempio le concentrazione di polveri e il livello di mutagenicità di gennaio 2016 e di gennaio 2015). Dal grafico riportato in Figura 2, infatti, si evince che non sempre a una maggiore concentrazione di PM_{2,5} corrisponde un numero maggiore di revertenti indotti per metro cubo di aria, sottolineando e confermando la rilevanza della tipologia e della quantità relativa delle sostanze mutagene associate al PM. Mettendo in relazione la concentrazione di polveri con il numero medio di revertenti/m³ di aria rilevati da inizio campionamento, il valore del coefficiente di determinazione R² ottenuto è 0,61 evidenziando un andamento simile, ma non totale corrispondenza.

Figura 2 - Andamenti comparati della mutagenicità del particolato atmosferico urbano PM_{2,5} (media dei revertenti/m³ indotti da estratti di campioni mensili) e delle concentrazioni (medie mensili) delle polveri, nei periodi indicati.

nd = non determinato; inv = invalidato

In Figura 3, si confrontano le concentrazioni mensili degli IPA totali, dotati di attività biologica (Σ fluorantene, pirene, benzo (a) antracene, ciclopenta (c,d) pirene, crisene, benzo (b) fluorantene, benzo (k) fluorantene, benzo (e) pirene, benzo (a) pirene, indeno (1,2,3-cd) pirene, dibenzo (a,h+a,c) antracene, benzo (g,h,i) perilene; dibenzo (a,l) pirene, dibenzo (a,e) fluorantene, dibenzo (a,e) pirene, dibenzo (a,i) pirene, dibenzo (a,h) pirene), con l'attività mutagena del particolato, riportata sia come media dei revertenti indotti in assenza di

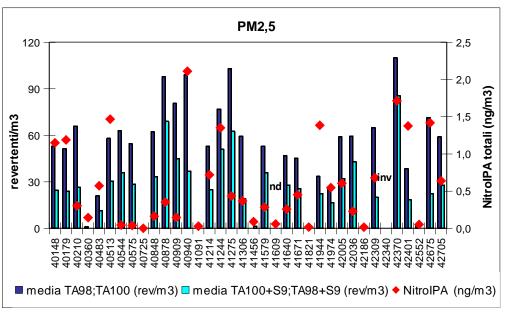
attivazione metabolica che come media dei revertenti ottenuti dai test condotti in presenza di S9, sensibili alla presenza di IPA.

Figura 3 - Comparazione dei livelli di IPA dotati di attività biologica (vedi testo) e attività genotossica determinata con i test sui ceppi TA98 e TA100 di Salmonella typhimurium con (+S9) e senza attivazione metabolica.

nd = non determinato; inv = invalidato

Pur evidenziandosi la stessa stagionalità delle concentrazioni di polveri, di IPA e dei revertenti per metro cubo, in cui nei mesi autunnali e invernali i valori di questi tre parametri sono tra loro statisticamente comparabili e sono maggiori di quelli rilevati nei mesi di luglio (Anova, post hoc di Tukey, p<0.05), si conferma una certa discrepanza tra le concentrazioni più alte di IPA e i valori più alti di revertenti indotti (R² di 0,42 considerando la media dei revertenti indotti in seguito ad attivazione metabolica esogena).

Si conferma anche un forte contributo alla mutagenicità del PM da parte di altre sostanze ad azione mutagena diretta.

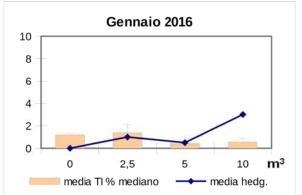

Per quanto riguarda, invece, l'andamento della concentrazione dei Nitro-IPA (Σ 1nitronaftalene, 2-nitronaftalene, 2-nitrofluorene (non più conteggiato da novembre 2010), 9nitroantracene, 9-nitrofenantrene (da luglio 2009), 2-nitro+3-nitrofluorantene, 1-nitropirene,

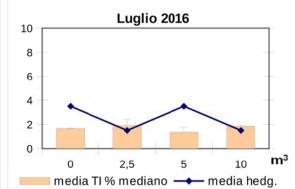
7-nitrobenzo(a)antracene, 6-nitrocrisene, 3-nitrobenzantrone, 1,6-dinitropirene, 1,8-dinitropirene, 6-nitrobenzo(a)pirene), con i dati del 2016 è variato l'andamento della serie storica, infatti, le concentrazioni di Nitro-IPA risultano essere simili in autunno ed inverno e maggiori di quelle estive, seguendo la stessa stagionalità degli IPA (Anova, *post hoc* di Tukey,p<0.05).

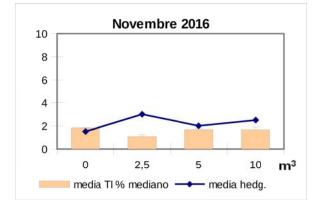
Non si riscontra nemmeno corrispondenza tra la maggiore attività mutagena diretta e la maggiore concentrazione di Nitro-IPA (Fig.4), evidenziando il contributo di altre sostanze alla mutagenicità del PM.

Figura 4 - Comparazione dei livelli di Nitro-IPA (vedi testo) e attività genotossica determinata con i test sui ceppi TA98 e TA100 di *Salmonella typhimurium* con (+S9) e senza attivazione metabolica.

nd = non determinato; inv = invalidato

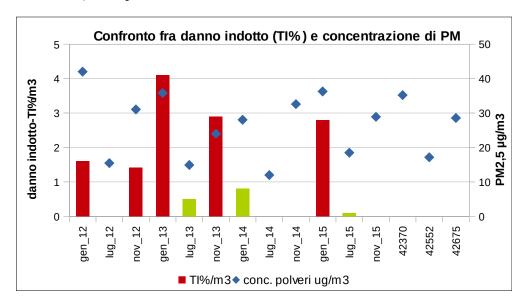



Test della cometa

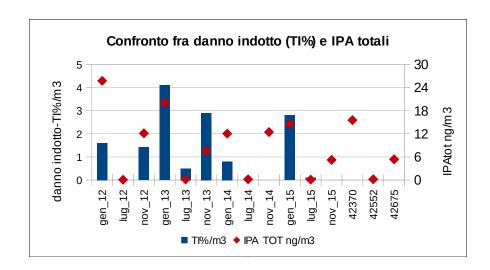

In Figura 5 vengono illustrati i risultati ottenuti dai tre campioni analizzati nel 2016: per ogni dose saggiata sono riportati sia i valori della percentuale dell'intensità di fluorescenza del DNA nella coda della cometa (%TI – espressa come media delle mediane delle due repliche) che la percentuale delle cellule che, in quanto particolarmente danneggiate, hanno perso la configurazione a cometa e appaiono come nuvole di DNA e sono dette "hedgehogs" (porcospini).

A differenza dei periodi precedenti tutti i campioni sono risultati negativi: nessun campione ha causato rotture al DNA, evidenziando così nel mese di gennaio, una minore genotossicità del PM rispetto agli anni precedenti.

Figura 5 – Grafici dose-risposta dei campioni analizzati nel 2016. Vengono riportati, per ogni dose, la media dei valori del danno al DNA - espresso come percentuale di TI - e della tossicità indotta dal campione - espressa come hedgehogs % - (vedi testo)



In nessun caso si osserva la presenza di effetto tossico sulle cellule subito dopo il trattamento con il campione, solo il campione di gennaio, nella fase di lettura, ha mostrato una tendenza all'aumento di cellule "hedgehogs" alla dose più alta, seppur con valori ancora molto bassi. Mettendo in relazione la concentrazione di polveri con l'aumento della percentuale di intensità di fluorescenza nella coda per metro cubo non si osserva corrispondenza fra la maggiore attività genotossica e la più alta concentrazione di PM (Fig. 6), infatti il valore del coefficiente di determinazione R² ottenuto è solo di 0,22.


Figura 6 – Andamenti comparati del danno indotto per metro cubo d'aria equivalente (espresso come percentuale di TI, vedi testo) ottenuto dai coefficienti angolari delle curve dose effetto (le barre rosse indicano i campioni positivi) e delle concentrazioni (medie mensili) delle polveri

Non si nota nemmeno corrispondenza, nella maggior parte dei mesi, fra le concentrazioni (nanogrammi per metro cubo di aria) di IPA totali (vedi paragrafi precedenti) con l'induzione di danno alle cellule A549 (%TI per metro cubo di aria) (Fig. 7), confermata da un R² di 0,34. L'andamento dei TI% e dei nitroderivati degli IPA non è assolutamente confrontabile (Fig.8) il valore del coefficiente di determinazione R² ottenuto, infatti, è zero.

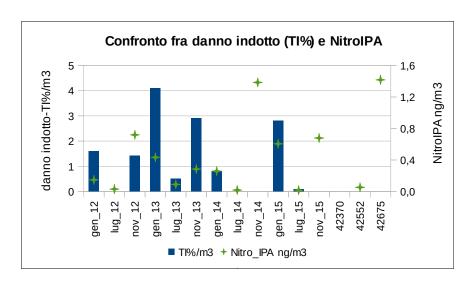


Figura 7 – Confronto del danno indotto (espresso come percentuale di TI, vedi testo) con la concentrazione medie mensili di IPA totali (vedi testo).

Si conferma ciò che è stato riscontrato in Salmonella, ovvero che spesso le singole classi di contaminanti chimici, seppur importanti nel processo di mutagenesi come ad esempio i Nitro-IPA, non sono utili per definire in toto la mutagenicità del particolato atmosferico.

Figura 8 – Confronto del danno indotto (espresso come percentuale di TI, vedi testo) con la concentrazione di Nitro-IPA (vedi testo).

Infine, mettendo a confronto i dati ottenuti dai test con Salmonella con quelli ottenuti con il test della Cometa, considerando solo i mesi in cui si eseguono entrambi i test, si ottiene una correlazione di 0,49, ciò indica, in base ai dati al momento disponibili, che l'utilizzo di batteri e di cellule umane porta a risultati non completamente sovrapponibili, soprattutto nell'ultimo anno.

CONCLUSIONI

Si conferma la stagionalità della mutagenicità rilevata dai test con Salmonella, già riscontrata negli anni precedenti, con valori più alti nei mesi più freddi e valori più bassi o negativi nel periodo estivo. I livelli di mutagenicità riscontrati nel 2016 sono statisticamente comparabili a quelli riscontrati nel 2015.

Si ricorda che, per problemi tecnici, non sono disponibili i dati di dicembre 2013 e di dicembre 2015 e questo potrebbe aver inciso sui valori medi di mutagenicità di quegli autunni (media dei mesi di novembre e dicembre).

Per quanto riguarda la genotossicità evidenziata con il test della Cometa sulla linea cellulare umana A549, nel 2016, a differenza degli anni precedenti, tutti i campioni sono risultati negativi contrariamente alla positività riscontrata con i test su Salmonella. Quindi nei campioni di PM prelevati a Montecucco in gennaio e novembre 2016, si evidenzia la presenza di sostanze ad esso associate in grado di indurre mutazioni di tipo puntiforme e non rotture a singolo e/o a doppio filamento nel DNA. Si ricorda che i dati ottenuti col test della Cometa sono relativi solo a tre mesi dell'anno (gennaio, luglio e novembre) ritenuti rappresentativi rispettivamente dell'inverno, dell'estate e dell'autunno.

Dai dati disponibili relativi al confronto tra IPA e attività mutagena del particolato, rilevata con i test su Salmonella, pur essendo evidente la stessa stagionalità, si evidenzia discrepanza tra le concentrazioni più alte di IPA e i valori più alti di revertenti indotti. Si conferma anche che il maggior contributo alla mutagenicità del PM è dato da sostanze ad azione mutagena diretta, cioè sostanze che possono agire direttamente sul DNA, ma che per lo più sembrano non appartenere ai derivati degli IPA rilevati, con cui non si evidenzia alcuna corrispondenza.

Dal confronto tra attività mutagena e concentrazione di PM_{2,5}, risultando evidente che non sempre a una maggiore concentrazione di PM_{2,5} corrisponde un numero maggiore di revertenti indotti per metro cubo di aria, pur restando una certa corrispondenza tra i due parametri, si conferma la rilevanza della tipologia e della quantità relativa delle sostanze mutagene associate al PM.

Dal confronto delle concentrazioni di IPA, di NitroIPA totali e di PM con l'induzione di danno al DNA nelle cellule A549 (%TI) rilevato con il test della Cometa, si conferma l'assenza di corrispondenza fra questi parametri. Occorre tenere in considerazione, nel confronto tra i risultati ottenuti con i test su Salmonella e quelli ottenuti con il test della Cometa, che i dati a disposizione sono numericamente diversi in quanto il test della Cometa sulle cellule A549, si effettua solo a partire dal 2012 mentre quelli ottenuti dai test su Salmonella sono disponibili dal 2008.

Come già sottolineato più volte, l'effetto biologico delle miscele complesse, quale è il particolato atmosferico, non può essere spiegato unicamente con l'una o con l'altra classe di contaminanti, almeno di quelle finora analizzate.

L'utilizzo di test con end point genetici diversi permette di ampliare le informazioni sui possibili danni al DNA provocati dal PM, risultando un utile strumento per verificarne in modo più completo l'eventuale genotossicità e quindi pericolosità per la popolazione esposta. Sotto si riporta l'indirizzo del sito web del Laboratorio Tematico "Mutagenesi Ambientale" dove sono pubblicati i dati relativi alla mutagenicità del particolato atmosferico urbano campionato a Piacenza e del particolato campionato negli altri nodi della rete regionale:

https://www.arpae.it/dettaglio_generale.asp?id=2871&idlivello=1610

Responsabile Laboratorio Tematico Mutagenesi Ambientale Dott.ssa Francesca Cassoni